

Reliability of the picture description task of the Western Aphasia Battery - Revised in Laurentian French Persons Without Brain Injury

Karine Marcotte^{1,2}, Alexandra Roy¹, Amélie Brisebois^{1,2}, Claudie Jutras^{2,3}, Carol Leonard^{4,5,6}, Elizabeth Rochon^{5, 6, 7, 8} and Simona Maria Brambati^{2,3,9}

¹ École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada.

² Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montréal, Québec, Canada.

³ Département de psychologie, Faculté des arts et des sciences, Université de Montréal, Montréal, Québec, Canada

⁴ School of Rehabilitation Sciences, University of Ottawa

⁵ Department of Speech-Language Pathology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada

⁶ Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Ontario, Canada

⁷ KITE Research Institute, Toronto Rehabilitation Institute, Toronto, Canada

⁸ Rehabilitation Sciences Institute, University of Toronto

⁹ Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada.

***Correspondence:**

Karine Marcotte, Ph.D.

Address: Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, 5400 Gouin Ouest, Montréal, Québec, Canada, H4J 1C5

Phone number: 514-338-2222 extension 7710

Fax number: 514-340-2115

E-mail: karine.marcotte@umontreal.ca

Running head: Reliability of the picture description of the WAB-R in Laurentian French

Keywords: discourse analysis, reliability, picture description, Persons Without Brain Injury

Abstract

Objective: Limited normative data (including psychometric properties) are currently available on discourse tasks in non-dominant languages such as Laurentian (Quebec) French. The lack of linguistic and cultural adaptation has been identified as a barrier to discourse assessment. The main aim of this study is to document inter-rater and test-retest reliability properties of the picnic scene of the Western Aphasia Battery – Revised (WAB-R), including the cultural adaptation of an information content unit (ICU) list, and provide a normative reference for persons without brain injury (PWBI).

Method: To do so, we also aimed to adapt an ICU checklist culturally and linguistically for Laurentian French speakers. Discourse samples were collected from 66 PWBI using the picture description task of the WAB-R. The ICU list was first adapted into Laurentian French. Then, ICUs and thematic units (TUs) were extracted manually, and microstructural variables were extracted using CLAN. Inter-rater reliability and test-retest reliability were determined.

Results: Excellent inter-rater reliability was obtained for ICUs and TUs, as well as for all microstructural variables, except for mean length of utterance, which was found to be good. Conversely, test-retest reliability ranged from poor to moderate for all variables.

Conclusions: The present study provides a validated ICU checklist for clinicians and researchers working with Laurentian French speakers when assessing discourse with the picnic scene of the WAB-R. It also addresses the gap in available psychometric data regarding inter-rater and test-retest reliability in PWBI.

1 INTRODUCTION

2 Expressive discourse is fundamental for daily communication. Every day, we are called
3 upon to produce discourse to tell the story of our day, to share an opinion on different subjects
4 or simply to converse with others. These discourse skills come naturally and effortlessly to most
5 of us. Although discourse production seems relatively easy, it involves a complex interplay of
6 multiple language, cognitive and socio-demographic variables. Compared to single word
7 production tasks, spoken discourse assessment thus offers a more ecological assessment of
8 language impairments (Bryant et al., 2016; Stark, Dutta, Murray, Bryant, Fromm, MacWhinney,
9 Ramage, Roberts, Den Ouden, et al., 2021). According to broad scientific consensus, discourse
10 is defined as larger than an utterance or a sentence (Kong, 2016). In fact, discourse is the most
11 elaborate manifestation of human expressive language (Ska et al., 2004). Discourse effectively
12 allows for the examination of multiple language characteristics in much more natural contexts
13 than other language tasks that have been more widely studied to date, such as picture naming
14 (Prins & Bastiaanse, 2004), which requires only the production of single words. Therefore, a
15 growing body of research has focused on spoken discourse assessment and analysis in post-
16 stroke aphasia (Stark, Dutta, Murray, Bryant, Fromm, MacWhinney, Ramage, Roberts,
17 den Ouden, et al., 2021), and more recently in neurocognitive disorders such as Alzheimer's
18 disease (Filiou et al., 2020; Mueller et al., 2018; Slegers et al., 2018). Discourse analysis is
19 especially useful because it allows the simultaneous assessment of several functions, including
20 the different language levels and other cognitive functions such as executive functions, in a
21 more ecological way than tests targeting each function separately (Filiou et al., 2020).

22 23 ***Importance of discourse assessment in clinical settings***

24 In a recent survey, 86% of speech-language pathologists reported that they performed

25 discourse assessment in people with acquired communication impairment (Bryant et al., 2017).
26 Single-picture description is most widely used in both persons without brain injury (PWBI) and
27 in clinical populations (Bryant et al., 2016) and for both clinical and research purposes because
28 it captures a wide range of information about language content, structure, and pragmatic skills in
29 a relatively quick and easy task. Moreover, picture description tasks provide good ecological
30 validity compared to single word elicitation tasks (Ahmed et al., 2013; Cooper, 1990; Doyle et
31 al., 1995; Giles et al., 1996; Slegers et al., 2018). Picture description reduces cognitive demands
32 on attention and executive functions (Giles et al., 1996; Slegers et al., 2018) as well as episodic
33 memory because the story is visually presented to the participant (Duong et al., 2003). These
34 tasks also offer a structured context with specific and restrained content, which allows clinicians
35 and researchers to compare between individuals at different points in time (Boucher et al., 2022;
36 Bryant et al., 2016; Chenery & Murdoch, 1994; Mackenzie et al., 2007).

37 Changes in discourse production can be observed in a variety of acquired neurogenic
38 disorders such as traumatic brain injury, stroke, mild cognitive impairment (MCI), Alzheimer
39 disease (AD), and primary progressive aphasia (PPA). Some changes can simply reflect the
40 normal aging trajectory (Boschi et al., 2017; Capilouto et al., 2016; Filiou et al., 2020; Hillis,
41 2007; Le Dorze & Bédard, 1998; Mueller et al., 2018). Studies examining discourse of
42 individuals presenting language impairments associated with cognitive decline (e.g., MCI,
43 AD) also mostly use a single image for picture description (Filiou et al., 2020). In their
44 review of picture description tasks, Mueller et al. (2018) reported that semantic content, which
45 can be examined by using thematic units (TUs) or relevant information content units (ICUs),
46 have proven to be the most effective measures in capturing language deterioration in MCI and
47 AD. Their review points out that robust observations about language impairment have been

48 made in the latest stage of AD but there are still many aspects to explore to detect subtle
49 preclinical changes in discourse in early cognitive decline.

50 More recently, a group of researchers has proposed the definition of *subjective*
51 *cognitive decline* (SCD). The SCD criteria include two main features: a) a self-reported
52 persistent cognitive decline without evidence of an acute event, and b) normal performance
53 using standardized objective tests (Jessen et al., 2020). Studies suggest that SCD could
54 foreshadow future deterioration of cognitive functions (Jessen et al., 2014; Mitchell et al.,
55 2014; Slot et al., 2019). Several cognitive domains can be affected in SCD, including
56 language. Verfaillie et al. (2019) reported that the use of specific words produced in
57 discourse was associated with high levels of amyloid burden in individuals with SCD,
58 whereas no conventional neuropsychological language tests nor other discourse measures
59 found such association. Profiling discourse feature trajectories would be useful to capture
60 subtle changes across cognitive decline and allow early identification of these individuals.
61 Considering that SCD is usually not detected by standard cognitive testing, its identification
62 requires measures highly sensitive and with robust psychometrical features (Jessen et al.,
63 2014).

64

65 ***Methodological challenges in discourse analysis***

66 There is a consensus that it is highly recommended to diversify sampling methods and
67 carefully select analysis procedures to obtain a representative picture of discourse skills (Bryant
68 et al., 2016), but no consensus on which measures and tasks should be used has yet arisen (Dietz
69 & Boyle, 2018). Regarding the task itself, the selected task, or set of tasks, can create disparities
70 among two persons from different cultures. For instance, some tasks, such as the Cookie Theft

71 (Goodglass et al., 2001), were developed decades ago and depict a scene from the past century
72 including cultural, linguistic and socioeconomic bias (Steinberg et al., 2022). Other tasks tend to
73 be more inclusive of multicultural individuals, but few have investigated the multicultural
74 impact of the stimuli on performance until recently, with the precarious painter scene
75 (Stockbridge et al., 2024). Moreover, language performance, in terms of content and length, can
76 vary depending on the task selected to elicit spoken discourse (Boucher et al., 2022; Bryant et
77 al., 2016). Several picture description tasks are available, but the visual elements of the pictorial
78 stimuli (e.g., number of elements, spatial location of the elements, relationships between the
79 elements) are highly variable, which may in turn affect production. The choice of task is thus
80 crucial because it must be socially and culturally adapted to provide a representative sample of
81 discourse production.

82 The choice of the measures extracted can also affect results obtained in the different
83 studies. The large methodological differences across studies with regards to the discourse
84 measures constitute major challenges for researchers when comparing results across studies
85 (Dietz & Boyle, 2018), as well as for clinicians when selecting outcome measure(s) (Azios et
86 al., 2022). In a review of 165 studies focusing on linguistic discourse analysis of people with
87 aphasia, Bryant et al. (2016) reported a total of 536 different linguistic measures for language
88 analysis. To date, most studies that have conducted discourse analysis have focused on the
89 macrostructural and microstructural variables of discourse, which are composed of the two first
90 stages (i.e., conceptual preparation and linguistic formulation) of Frederiksen's model of
91 discourse (Frederiksen & Stemmer, 1993). Macrostructural measures refer to a higher-level
92 conceptual structure of discourse (Dijk, 2019), such as informativeness, coherence, and
93 cohesion. Among the most studied macrostructural variables, informativeness assesses the

94 ability of an individual to convey relevant information about a given stimulus (Armstrong,
95 2000). A variety of measures have been used to examine informativeness, such as content units
96 (also called by others information content unit (ICU); Yorkston & Beukelman, 1980), main
97 concept analysis (MCA; Nicholas & Brookshire, 1995), and more recently, thematic units (TUs;
98 Marini et al., 2011). An ICU quantifies key elements in a pictorial stimulus which can be
99 divided into different categories (e.g., objects, people, places, and actions). The TU checklist,
100 on the other hand, is based on a finite set of semantic or more general themes, which may
101 arguably increase its reliability (Brookshire & Nicholas, 1994). One of the main advantages of
102 ICUs and TUs is that they are easy and quick to score, which increases their applicability in
103 clinical settings. However, the reliability of these measures requires further investigation with
104 larger sample sizes.

105 On the other hand, microstructural measures refer to local or within-sentence features
106 involving phonological, lexical, semantic and grammatical processing. Mean length of utterance
107 (MLU), duration, number of words per minute (WPM) and moving average token-type ratio
108 (MATTR) have been shown to be the most sensitive to language impairment. For instance,
109 Brisebois, Brambati, Rochon, et al. (2023) found that multilevel analysis of discourse changes
110 revealed a different evolution of variables at each discourse level in people with acquired
111 communication impairments (e.g., Brisebois, Brambati, Rochon, et al., 2023; Marini et al.,
112 2011), which supports the importance of developing reliable discourse measures at both the
113 macrostructural and microstructural levels.

114 Moreover, a recent international survey identified that the scarcity of discourse
115 protocols and normative data, including psychometric properties, is a barrier to discourse
116 assessment (Stark, Dutta, Murray, Fromm, Bryant, Harmon, Ramage, & Roberts, 2021). In

117 addition, test-retest reliability and inter-rater reliability have been reported for only a minority
118 of measures (Pritchard et al., 2017). Test-retest reliability evaluates the consistency and the
119 stability of a measure where participant behavior is tested with the same method, after a certain
120 time interval (Schiavetti et al., 2011). Various intraindividual factors (e.g., tiredness, level of
121 attention, etc.) have an impact on discourse production and impact day-to-day performance
122 (Spencer et al., 2020). Documentation about the reliability of a measure throughout a certain
123 period of time would guide individual clinical decision-making in differentiating between
124 natural variation and a therapeutic effect (Brookshire & Nicholas, 1984). Also, exploring test-
125 retest reliability of discourse measures could help make more informed assumptions about
126 discourse trajectories in normal aging and in people presenting cognitive decline, such as in
127 SCD (Mueller et al., 2018). Therefore, natural intraindividual fluctuations found in discourse
128 of the elderly are important to document. To our knowledge, most studies that have reported
129 test-retest reliability of discourse metrics have done so using short intervals (i.e., between one
130 and two weeks) in order to obtain reliable measures in the context of potential learning
131 between two assessments (Bartels et al., 2010). However, a longer period between testing
132 sessions may better reflect changes associated with typical aging (Mueller et al., 2018).
133 Among the few studies focused on test-retest reliability, Boyle (2015) reported poor test-retest
134 reliability when multiple discourses tasks were analyzed separately and showed an increase in
135 stability over time of selected measures when various narrative tasks were combined.
136 Similarly, Brookshire and Nicholas (1994) suggested that test-retest reliability can be
137 improved by using multiple stimuli, or by increasing the sample size. These results suggest
138 that clinicians and researchers should not draw conclusions based on a single picture
139 description task. However, Stark et al. (2023) reported that test-retest reliability varied among

140 the different tasks, which argues in favor of not combining different types of discourse.

141 As mentioned above, inter-rater reliability, is another important psychometric property
142 to report. It evaluates the consistency of a score on the same samples by different raters. The
143 recent review of Pritchard et al. (2017) indicated that inter-rater reliability was reported for
144 approximately a third of discourse measures used. More importantly, the studies reviewed did
145 not employ appropriate statistical methods to test reliability.

146 These results combined support the importance of studying the quality of
147 measurements in terms of psychometric properties (e.g, Pritchard et al., 2017; Stark, Dutta,
148 Murray, Bryant, Fromm, MacWhinney, Ramage, Roberts, den Ouden, et al., 2021; Stark et al.,
149 2022) for each group of participants, for each elicited task and for longer intervals considering
150 that test-retest data currently available are not adapted for longitudinal studies (Mueller et al.,
151 2018). The investigation of reliability of various discourse measures will help identify
152 discourse measures with the best psychometrics properties for both research and clinical
153 purposes.

154 The lack of linguistic and culturally adapted methods was an additional barrier in non-
155 dominant languages, according to the previously mentioned international survey (Stark, Dutta,
156 Murray, Fromm, Bryant, Harmon, Ramage, & Roberts, 2021). Language(s) spoken by an
157 individual can also impact language production profiles (Filiou et al., 2020; Mehler, 1994).
158 Currently, we observe an over-representation of English-speakers in data available on language.
159 This lack of language diversity in the languages investigated constitutes a barrier toward the
160 development of globally equitable measures of connected speech and early identification of
161 neurocognitive disorders such as AD (García et al., 2023). Research samples collected to date
162 are not always representative of linguistic and cultural differences that constitute language

163 diversity on a larger scale. Compared to the English-speaking population, the scope of
164 assessments is more limited for French speakers, especially from the province of Quebec.
165 French is not only a non-dominant language in Canada, but across North America. Many
166 linguistic challenges are present considering that Quebec abounds in a unique linguistic richness
167 because of its regional variants of the French language (i.e., dialects) and the presence of
168 multilingualism. Over the last few years, our team has focused on the standardization of
169 discourse assessment in Laurentian (also known as Canadian or Quebec) French (Boucher et al.,
170 2022; Brisebois, Brambati, Jutras, et al., 2023; Marcotte et al., 2022). The present study is an
171 extension of this work.

172

173 *Aims of the study*

174 The current study is an extension of our previous study (Boucher et al., 2022) that aimed
175 to provide reference data for picture description of the picnic scene of the WAB-R (Kertesz,
176 2006) for adults over 50 years old. The main aim of the present study is to investigate the
177 reliability of discourse measures at the micro- and macro-structural levels of discourse for the
178 WAB-R picture description task, especially test-retest reliability, which was not tested in our
179 previous study (Boucher et al., 2022). To do so, we also needed to develop a culturally and
180 linguistically adapted list of ICUs. As recently reported by others (Stark et al., 2023) and our
181 team (Brisebois, Brambati, Jutras, et al., 2023), we expect good inter-rater reliability (IRR), but
182 lower test-retest reliability in PWBI. Secondly, this study will provide reference data for the
183 picnic scene of the WAB-R for Laurentian French PWBI.

184

185 **METHODS AND MATERIALS**

186 All necessary and recommended standards for reporting spoken discourse are reported in
187 the manuscript. For more details, the best practice guidelines checklist from Stark et al. (2022)
188 is provided in Supplementary Material 1.

189 ***Participants***

190 The sample consisted of a subset of individuals from a previously published study
191 (Marcotte et al., 2022). Briefly, 66 PWBI were recruited in larger projects (approved by the
192 ethics committee at *Centre de recherche du Centre intégré universitaire de santé et de services*
193 *sociaux du Nord-de-l'Île-de-Montréal*) that aimed to investigate longitudinal post-stroke
194 aphasia recovery. Eighteen participants were recruited for a project which sought to investigate
195 longitudinal changes in post-stroke aphasia (CIUSSS-NIM; # MP-32-2018-1478). Another 48
196 participants were recruited during the COVID-19 pandemic for a project which sought to
197 investigate longitudinal spoken discourse changes following a stroke (CIUSSS-NIM # 2020-
198 1900). Written informed consent was obtained from all participants. The inclusion criteria for
199 this study were: 1) to be at least 50 years of age; 2) have Laurentian (Quebec) French as their
200 primary language of use at the time of the study. The exclusion criteria for this study were: 1)
201 presenting a severe mental illness; 2) presenting an acquired or developmental language
202 impairment; 3) suffering from a neurological impairment, including a neurocognitive
203 impairment; 4) having suffered from a traumatic brain injury; 5) self-reporting cognitive decline
204 or complaints; 6) uncorrected visual or auditory deficits. Exclusion criteria were assessed using
205 a self-reported questionnaire completed by each participant prior to the study. Participant
206 characteristics appear in Table 1. All participants were Caucasian.

207
208 [Table 1 should be inserted here]
209

210

211 ***Adaptation of the Information Content Unit (ICU) list in Laurentian French***

212 An ICU list of the picnic scene of the WAB-R (Kertesz, 2006) was originally developed
213 for American English speakers (Jensen et al., 2006), and cultural adaptation requires that the
214 target population shares a similar cultural background with the initial sample. Cultural and
215 linguistically valid adaptations usually involve modifications, i.e., developing an entirely new
216 task (Kong, 2009) or refining the scoring protocol (Brisebois, Brambati, Jutras, et al., 2023;
217 Criel et al., 2021; Yazu et al., 2022). Considering that Laurentian French speakers share a
218 similar cultural background with American English speakers regarding the picnic scene, an
219 adaptation was made by refining the scoring protocol. Thus, the ICU checklist was translated
220 and adapted from the original list of Jensen et al. (2006). First, we used the online free version
221 of DeepL Translator (*DeepL Traduction – DeepL Translate*, 2022) to translate the first draft of
222 the 36 ICUs in French. Second, a research assistant (C.J.), who is a native Laurentian French
223 speaker with advanced knowledge of written English, reviewed the first draft to ensure that each
224 element was as semantically similar as possible to the original version as possible. Third, final
225 adjustments were made via discussion between the research assistant, the principal investigator
226 (K.M.) and a Ph.D. student (A.B.). Based on these discussions, two of the ICUs were combined
227 ('On the beach' and 'In the sand') because they are used interchangeably in French. Then, we
228 compared the list with the one used in other studies (Boucher et al., 2022; Gallée et al., 2021).
229 As a result, we added one ICU ('run/is chasing') to the action category considering the frequent
230 production of this element in these studies. The final integrated translation of the ICU list is
231 reported in the Results section.

232

233 ***Data Collection***

234 All participants completed a variety of tasks evaluating different language components,
235 including the picnic scene of the WAB-R (Kertesz, 2006), which was the sole discourse task.
236 Tasks were completed twice, with the mean number of days between sessions equaling $253.36 \pm$
237 67.45 days and a range of 162- 406 days. Audio recordings were collected for 18 participants
238 who completed the task in person using a Sony IC recorder icd-px312 for 27 participants and a
239 Sony HDR-PJ540 camera (9.2 megapixels). Discourse samples from the picnic scene were
240 collected by video recording using the Zoom platform (<https://zoom.us>) for 48 participants. For
241 the in-person group, the picnic scene stimulus was placed on the desk in front of the participant.
242 For the videoconference group, further details regarding the procedure can be found in the
243 Supplemental Material S1 of Marcotte et al. (2022). No significant difference has been found
244 between in-person and videoconference administration of this task (Marcotte et al., 2022),
245 which supports combining both groups in the present study.

246 Briefly, the task was administered by either trained research assistants or trained
247 certified speech-language pathologists. Participants were asked to describe what they saw in the
248 picture, using complete sentences (*« Décrivez en détail tout ce qui se passe sur cette image en*
249 *utilisant des phrases complètes. »*). No time limit was given. If participants remained silent for
250 more than 10 seconds, the examiner asked them once if they had anything else to add before
251 ending the recording.

252

253 ***Transcription***

254 The procedure for transcription was previously reported in Brisebois et al. (2020).
255 Participants' discourse was transcribed verbatim. The Code for the Human Analysis of

256 Transcripts (CHAT) manual (MacWhinney, 2000) was used for the phonemic transcription,
257 utterance segmentation, transcription and scoring, with additional guidance for French speakers
258 (Colin & Le Meur, 2016) and from the phonological, syntactic and semantic criteria proposed
259 by Marini et al. (2011). Video recordings were imported and transcribed in the EUDICO
260 Language Annotator (ELAN; Sloetjes & Wittenburg, 2008) by a trained research assistant or by
261 an experienced speech-language pathologist. Once the transcription was completed, the
262 morphological and grammatical information coding was conducted using the CLAN program
263 called *mor* (MacWhinney, 2000), which tags morphemes and words under each utterance in the
264 transcripts. Microstructural measures (described in Table 2) were extracted automatically from
265 each sample at each time point using the EVAL program of CLAN software (MacWhinney,
266 2000 version of January 5, 2021, updated September 30, 2021).

267 ***Dependent variables***

268 Discourse measures were selected based on previously reported research into
269 discourse impairment associated with cognitive decline in people with neurocognitive disorders
270 (Filiou et al., 2020; Slegers et al., 2018). Both macrostructural and microstructural variables are
271 described in Table 2. All microstructural variables were extracted for each sample using the
272 program EVAL of CLAN. Specific CLAN commands for each variable are provided in Table 1
273 of Supplementary Material 2.

274

275 [Table 2 should be inserted here]

276

277

278 ***Data analysis***

279 ***Analysis of ICU frequency***

280 Previous test adaptation in Laurentian French has demonstrated cultural differences in
281 performance on specific task items (e.g., Brisebois, Brambati, Jutras, et al., 2023; Callahan et
282 al., 2010). Hence, the frequency of each ICU was computed at test and retest. Only the ICUs
283 which were produced by a minimum of 20% of the sample, as in Jensen et al. (2006), were kept
284 in the final adaptation of the ICU checklist.

285

286 ***Inter-rater reliability***

287 To determine inter-rater reliability in transcription, 15 transcripts (representing 11% of
288 the transcripts) were randomly selected for a second transcription. Inter-rater reliability was
289 computed for 3 variables: tokens, total number of utterances and CIUs. The total number of
290 tokens represents the accuracy of the transcription. The number of utterances is critical in
291 CHAT format since it relies uniquely on the transcriber's competence to distinguish utterance
292 boundaries. Reliability on this measure suggests consistency in utterance segmentation
293 throughout the samples. As for CIUs, they have been more extensively studied in English
294 (Fergadiotis et al., 2019), but have only been studied with the Cinderella story retell task in
295 Laurentian French (Brisebois, Brambati, Jutras, et al., 2023). To determine inter-rater reliability
296 for scoring, 30 transcripts per rater (representing 22% of the transcripts) were selected randomly
297 for two raters as before. Both raters scored the ICU and TU lists. A greater proportion of
298 transcripts were selected since these measures have been less extensively studied.

299 Two-way mixed intraclass correlation coefficients (ICCs) with absolute agreement with
300 a 95% confidence interval (CI) were calculated on both transcription (i.e., number of tokens,
301 utterances and CIUs) and scoring variables (i.e., TUs and ICUs). Use of ICC for this purpose is
302 optimal since this analysis takes into account absolute agreement and intra-group variability
303 (Koo & Li, 2016). The interpretation of ICC values is based on guidelines reported in Koo and

304 Li (2016): poor ($r < 0.50$), moderate ($0.50 < r < 0.75$), good ($0.75 < r < 0.90$) and excellent ($r >$
305 0.90).

306

307 ***Test-retest reliability***

308 Data distribution was analysed using Kolmogorov-Smirnov test for all dependent
309 variables, for each session. Consistent with similar studies (Stark et al., 2023), more than 70%
310 of the data were not normally distributed. Consequently, we chose non-parametrical statistical
311 analyses for all variables to maintain consistency. The Wilcoxon signed rank-test was used to
312 determine if there was a difference between the two sessions for each discourse
313 variable. Twenty-two comparisons were made; using the Bonferroni correction, alpha was set at
314 .002. Spearman Rho correlations were used to assess the association between test and retest,
315 with significance set at $p < 0.05$. Two-way mixed effects intra-class correlation (ICC) based on
316 single measurement and absolute agreement with a 95% confidence interval (CI) were
317 computed to evaluate test-retest reliability. As for inter-rater reliability, the interpretation of ICC
318 values is based on guidelines reported in Koo and Li (2016).

319 Regarding agreement, visual inspection of the data was completed by examining the
320 limits of agreement between testing points with Bland-Altman plots (Altman & Bland, 1983).
321 Bland-Altman plots are scatterplots with the Y axis representing the difference between the
322 results obtained at test and retest and the X axis representing the mean of the test and retest
323 results. Limits of agreement are represented with horizontal dashed lines at ± 1.96 standard
324 deviations of the mean of differences. If 95% of the data falls between these limits, the
325 agreement between test and retest is considered good (Bland & Altman, 1999). These plots were
326 created for the variables that obtained the best test-retest ICC.

327 As in Stark et al. (2023), minimal Detectable Change (MDC) was also computed across
328 all dependent variables using the standard error of measurement (SEM). The SEM formula
329 includes standard derivation of tests (SDx) and correlation coefficient (rxy): $SEM = SD\sqrt{1-r}$.
330 MDC is a well-known measure commonly used to investigate the variability in a score that
331 reflects “real” change, greater than the measurement error. We also established a 90%
332 confidence of prediction for MDC to estimate the possible change related to therapeutic gains
333 (Donoghue et al., 2009) or pathological change in cases of PWBI. The formula to calculate
334 MDC90 is $MDC90 = SEM * 1.65 * \sqrt{2}$.

335

336 *Analysis software*

337 All statistical analyses were performed using SPSS® v26.0. Bland-Altman plots were
338 computed using RStudio 2022.07.2.

339

340

341 RESULTS

342 Development of the adapted ICU list

343 The frequency of each ICU was computed at test and retest and appears in Table 3. All
344 ICUs reached the 20% frequency threshold used by Jensen et al. (2006) at both timepoints,
345 except for one action (i.e., ‘*le drapeau vole*’ [flag flies]) which reached 24% at test but 17% at
346 retest. The action was kept in the final list because its mean frequency score was slightly above
347 the 20% cut-off. The final list of ICUs adapted in Laurentian French with the detailed scoring
348 guide is available in an Excel sheet ‘*Modèle à copier*’ (i.e., template) in Supplementary Material
349 3.

350
351 [Table 3 should be inserted here]
352

353 ***Inter-rater reliability***

354 Scoring reliability was excellent for both ICUs ($ICC_{[2,1]} = 0.973$, 95% CI [0.944, 0.987])
355 and TUs ($ICC_{[2,1]} = 0.958$, 95% CI [0.914, 0.991]). Transcription reliability was excellent for
356 tokens ($ICC_{[2,1]} = 0.959$, 95% CI [0.881, 0.986]) and the total number of CIU ($ICC_{[2,1]} = 0.988$,
357 95% CI [0.932, 0.997]), and good for utterances ($ICC_{[2,1]} = 0.831$, 95% CI [0.559, 0.941]).

358 Detailed results are reported in Table 2 of Supplementary Material 2.

359

360 ***Reference data***

361 Table 4 reports descriptive statistics of each discourse variable (data distribution, means,
362 standard deviations, ranges and medians) for each session. In summary, no significant
363 differences between groups for each dependent variable were revealed. No systematic
364 differences were obtained for both macrostructural and microstructural variables. The strengths
365 of the relationship between test and retest ranged from weak to moderate for all variables.

366

367 **[TABLE 4]**

368

369 ***Test-retest reliability***

370 Test-retest reliability results are presented in Table 5. In summary, ICCs between test
371 and retest ranged from poor to moderate for all variables. Among the macrostructural measures,
372 the highest strength of relationship was found for ICUs/min ($ICC_{[2,1]} = 0.695$) and TUs/minute

373 (ICC_[2,1] = 0.631). For the microstructural variables, the highest strength of relationship, based
374 on Koo and Li (2016) was found for WPM, duration, tokens, CIU_{total} and CIUs/minute.

375

376 **[TABLE 5]**

377 Bland-Altman plots were created for the microstructural variable that obtained the best
378 and the worst test-retest ICCs. Figure 1 illustrates the limits of agreement for the variables with
379 the highest strengths of relationships, namely ICUs/minute (ICC_[2,1] = 0.695), TUs/minute
380 (ICC_[2,1] = 0.631) and WPM (ICC_[2,1] = 0.641). Mean difference of agreement between test and
381 retest was the closest to zero for TUs/minute, more precisely at -0.67. However, only
382 ICUs/minute and WPM demonstrated good agreement according to the standards of Bland and
383 Altman (1999), with 95% of the data (i.e., 63 out of 66) within ± 1.96 standard deviations of the
384 mean of differences. TUs/minute obtained 90% of the values (i.e., 62 out of 66) within limits of
385 agreement of ± 1.96 standard deviations.

386 Figure 2 represents the limits of agreement for the variables with the lowest strengths of
387 relationships, namely noun-to-verb ratio (ICC_[2,1] = 0.265) and MATTR (ICC_[2,1] = 0.244).
388 Although the strengths of the relationships were poor, both noun-to-verb ratio and MATTR
389 demonstrated good agreement according to the standards of Bland and Altman (1999), with
390 95% of the data (i.e., respectively 64 and 63 out of 66) within ± 1.96 standard deviations of the
391 mean of differences. The mean difference of agreement between test and retest was of zero for
392 MATTR and close to zero for noun-to-verb ratio (0.58).

393

394 **DISCUSSION**

395 This study aimed to document inter-rater and test-retest reliability of various discourse

396 measures in Laurentian French, including the cultural adaptation of an ICU list, and to provide
397 reference data for the picture description task of the picnic scene (Kertesz, 2006) in PWBI.
398 Firstly, a cultural and linguistic adaptation of the ICU list of Jensen et al. (2006) was developed
399 to reflect speakers of Laurentian French. Similar to our adaptation of the main concept analysis
400 for the Cinderella story retell task (Brisebois, Brambati, Jutras, et al., 2023), our adaptation of
401 the ICU list task led to modifications from the original list. Regarding reliability, inter-rater
402 reliability results ranged from good to excellent for all variables. While there were no
403 systematic differences between test and retest for all variables, test-retest reliability was poor to
404 moderate. As a result, used alone, this discourse task does not meet the requirements to conduct
405 group research studies in PWBI (ICC >.70), and even less for clinical use (ICC >.90)
406 (Fitzpatrick et al., 1998).

407

408 **Test-retest reliability**

409 The results of the current study are complementary to the previous studies conducted by
410 members of our research team (Boucher et al., 2022; Brisebois, Brambati, Jutras, et al., 2023;
411 Marcotte et al., 2022) that aimed to develop gold standard measures to assess discourse
412 production in PWBI who speak Laurentian French. These results highlighted the continued
413 need to investigate test-retest reliability of discourse measures (Pritchard et al., 2017, 2018).
414 The lack of valid and standardized discourse measures compromises the early detection of
415 pathological changes and does not allow clinicians to fully capture the changes between two
416 assessments. Not surprisingly, the most reliable discourse measures were those of efficiency,
417 namely ICUs/min, TUs/min and WPM. This is consistent with previous findings (Boyle, 2015;
418 Brookshire & Nicholas, 1994; Stark et al., 2023), which reported that WPM and CIUs/min are

419 reliable measures to use for clinical decision making in people with aphasia as well as for the
420 detection of subtle or mild cognitive decline. Consistent with previous evidence, this study
421 suggests that WPM and ICUs/min are among the most reliable measures in PWBI.

422 Nonetheless, in contrast to our recent work with the Cinderella story retell task
423 (Brisebois, Brambati, Jutras, et al., 2023), no measures extracted from the picnic scene met the
424 reliability requirements as defined by Boyle (2014) and Fitzpatrick et al. (1998) for inclusion in
425 research studies and, even less, the criterion for clinical use. Considering the poor test-retest
426 reliability of this task, we recommend selecting the measures with the highest test-retest
427 reliability, and to use them with caution in both research and clinical making decisions.

428 We did not compare test-retest reliability between PWBI and people with aphasia, but
429 previous evidence suggests that it is generally lower in PWBI (Brookshire & Nicholas, 1994;
430 Stark et al., 2023). Therefore, the normative data presented here should not be used to evaluate
431 the recovery or the impact of therapy for people with aphasia. Further research will be needed to
432 establish the psychometric properties of this discourse task in a group of people with chronic
433 aphasia, considering the differences observed between the two groups by others (Stark et al.,
434 2023). Test-retest reliability of discourse measures improves when looking at a set of tasks
435 rather than when evaluating for each task separately (Boyle, 2014; Brookshire & Nicholas,
436 1994; Stark et al., 2023). As recently highlighted by Stark et al. (2023), it is crucial to evaluate
437 the test-retest reliability of each task or each set of tasks because of the variability observed
438 between the different tasks.

439
440 **Inter-rater reliability**

441 Inter-rater reliability (IRR) is also an important psychometric property to consider when
442 trying to identify outcome measures. As reported previously (Boucher et al., 2022; Marcotte et

443 al., 2022), the total number of TUs and total number of ICUs in our study showed excellent
444 IRR. Consistent with previous studies, including ours (e.g., Brisebois, Brambati, Jutras, et al.,
445 2023; Stark et al., 2023), CIUs and tokens also produced excellent IRR. The excellent reliability
446 for the tokens suggests that the transcriptions were highly reliable between our raters. In
447 contrast, IRR for utterances (i.e., which refers to the segmentation of the sample into utterances)
448 was only considered good in the present study, but excellent in previous studies including a
449 recent study by our group (e.g., Brisebois, Brambati, Jutras, et al., 2023; Stark et al., 2023).
450 Although IRR was found to be excellent with utterances using the Cinderella story retell task in
451 our recent study, it was lower than in Stark et al. (2023), which may be explained by three main
452 differences. First, the prosody in French is very different than that in English. Briefly, French is
453 characterized by a succession of mostly rising contours for non-terminal constituents, and a
454 greater variability for the tonal contour of terminal constituents (Delais-Roussarie et al., 2020).
455 Thus, the lower regularity in prosody of the terminal constituents in French may confound
456 segmentation. Colin and Le Meur (2016) added supplementary rules to reduce the difficulty
457 associated with segmentation in French, but they still reported that it was difficult to standardize
458 the segmentation. Second, the length of this study's samples was shorter than in previous
459 studies, which either combined the discourse tasks (Stark et al., 2023) or had longer samples
460 (Brisebois, Brambati, Jutras, et al., 2023). The lower number of utterances might have reduced
461 the statistical power of the ICC. Samples of a minimum of 300 to 400 are recommended to
462 improve test-retest reliability (Brookshire & Nicholas, 1994). In the current study, we collected
463 samples with a mean of 234 words at test and 250 words at retest, which is below the
464 recommended minimum length of samples that investigate test-retest reliability. Third, it is now
465 well documented that the instructions given and the pictorial stimulus used to elicit discourse

466 generate differences in the style of production. For instance, picture description tasks such as
467 the picnic scene reduce the use of linguistic markers to connect the different elements, which
468 may complicate the segmentation compared to other types of tasks (Marini et al., 2005).

469

470 ***Clinical implications***

471

472 One of the main applications of our study is the elaboration of a list of ICUs in
473 Laurentian French for the picnic scene from the WAB-R. In their review, Slegers et al. (2018)
474 showed that information units and efficiency were the most reported discriminant variables in
475 picture description tasks between individuals with AD and PWBI. Documentation of macro-
476 structural features in discourse in healthy adults over time is interesting because studies suggest
477 that changes in measures relating to the macrostructure of discourse (i.e., informativeness,
478 global and local coherence) may elicit deficits associated with the decline of cognitive functions
479 in neurocognitive disorders (Pistono et al., 2019; Slegers et al., 2018; Taler & Phillips, 2008).

480 Another important reason for the adaptation of the ICU list for the picnic scene to Laurentian
481 French is that this measure is relatively easy and quick to implement in language assessments,
482 including for both PWBI and people with aphasia. Microstructural analyses typically rely on
483 long transcriptions which are used less frequently in clinical settings (Bryant et al., 2017).
484 Similar to our TU list (Brisebois et al., 2020), the ICU scoring list is based on a finite set of
485 content units that are more easily quantified and thus more suitable for clinical settings.

486 Moreover, the present study provides reference data regarding the longitudinal changes
487 in discourse of PWBI. We reported variability and Minimal Detectable Change (MDC90),
488 which are essential in both clinical settings and future studies to identify 'real' changes and not
489 only changes associated with normal test-retest variability, especially in subclinical populations.
490 For instance, considering that SCD is usually not detected by standard cognitive testing, its

491 identification requires highly sensitive measures with robust psychometrical features (Jessen et
492 al., 2014). In literature reviews of discourse measures in people with neurocognitive diseases
493 (e.g., Filiou et al., 2020; Slegers et al., 2018), microstructural variables were identified to be
494 different in people with mild cognitive impairment compared to PWBI in picture description
495 tasks (Filiou et al., 2020; Slegers et al., 2018). However, limited data are available regarding
496 the normal variability observed between two testing sessions. The adaptation and
497 characterization of the reliability of discourse measures for Laurentian French speakers is thus
498 potentially important for clinicians to profile impairments associated with neurocognitive
499 conditions (Croisile et al., 1996; Gallée et al., 2021; Jensen et al., 2006), or SCD. As mentioned
500 previously, a large proportion of speech-language pathologists (Bryant et al., 2017), and
501 probably neuropsychologists, only use one discourse task in their assessments. The present
502 results suggest that both researchers and clinicians should be careful in their interpretation of
503 change with the description of the picnic scene of the WAB-R (Kertesz, 2006) when used alone.

504

505 **The importance of increasing linguistic and cultural diversity**

506 An urgent global call for action was recently made by the International Network for
507 Cross-Linguistic Research on Brain Health, better known as Include ([https://include-](https://include-network.com)
508 [network.com](https://include-network.com)), to increase linguistic and cultural diversity in the investigation of neurocognitive
509 disorders (García et al., 2023). To date, the majority of studies have been conducted with
510 English speakers. The present study aims to help reduce the global inequities across minority
511 languages, by collecting data in an under-represented language such as Laurentian French. By
512 doing so, we have contributed to the generation of linguistic features that are potentially able to
513 differentiate between normal aging, SCD and various neurocognitive diseases, by using cost-

514 effective language assessments and by developing rigorous and standardized discourse
515 measures. An increased number of studies on languages other than English is critical to reduce
516 global inequities concerning the assessment of neurocognitive diseases.

517

518 **Limitations**

519 This study is not without limitations. First, the sample size is relatively small, although
520 comparable to (e.g., Richardson & Dalton, 2016) or even higher than similar studies (Stark et
521 al., 2023). Considering that the population studied (i.e., French-speaking persons living in
522 Quebec) is less than 8 million people, the number of participants is relatively high compared to
523 similar studies. Second, the present results might not be generalizable to other French dialects
524 because some words and expressions are only used in the Laurentian French dialect. Third, our
525 sample lacks representation of individuals with lower levels of education. All participants had a
526 minimum of 11 years of education (i.e., high school completed in Quebec). Previous evidence
527 has demonstrated the impact of education on discourse abilities. For instance, people with fewer
528 years of education tend to produce shorter and incomplete descriptions (Mackenzie, 2000).
529 Similarly, Le Dorze and Bédard (1998) reported that Laurentian French speakers with fewer
530 years of education produced less informative discourse. It will be important in the future to
531 include individuals with lower levels of education. Fourth, in contrast to previous studies (e.g.,
532 Stark, Alexander, et al., 2022), the time between testing sessions was longer and ranged from
533 162 to 406 days, to better reflect changes associated with typical aging (Mueller et al., 2018)
534 and the time between two assessments when neurocognitive disease is suspected. This made
535 comparison with other studies difficult. Fifth, a cognitive screening was not administered to all
536 our participants (and has therefore not been reported). However, no participant self-reported any

537 cognitive impairments nor any impact on their daily functioning. Sixth, no vision nor auditory
538 screenings were conducted to ensure all participants had sufficient vision and hearing abilities.

539 **Conclusion**

540 To conclude, we have developed a linguistically and culturally adapted ICU list and
541 documented poor to moderate test-retest reliability of discourse measures in speakers of
542 Laurentian French without brain injury for the picnic scene of the WAB-R (Kertesz, 2006) . The
543 present study contributes to the urgent need to increase linguistic and cultural diversity in the
544 investigation of spoken discourse and provide tools for early detection of neurocognitive
545 disorders (García et al., 2023). It is also crucial to be able to detect the presence of
546 pathological changes in PWBI. The scarcity of psychometrically robust normative data for
547 Laurentian French, a non-dominant language in North America, creates inequities for this
548 minority population and is a barrier to assessing discourse production for both researchers and
549 clinicians.

550 The picnic scene is used by several clinicians and researchers who work with speakers of
551 Laurentian French, just as it is to Canadian speakers of English, because it illustrates a typical
552 scene commonly experienced (or observed) in Quebec. Thus, the cultural adaptation of the ICU
553 list of the picnic scene is important. The overall results provide insight into typical performance
554 and variation, which is crucial to differentiate language changes due to pathology (Boyle, 2014).
555 Considering the multitude of factors that can have an impact on intra-individual variability and
556 test-retest reliability, this study supports the refinement of the psychometric properties of
557 measures available for discourse analysis for Laurentian French speakers in Quebec.

558

559 **ACKNOWLEDGMENTS**

560 We are very grateful to all the participants who contributed to this study. Also, we wish to thank
561 Marianne Désilets-Barnabé and Noémie Desjardins for their help in data collection. This project
562 was funded by the Heart and Stroke Foundation (grant-in-aid numbers G-16-00014039 and G-
563 19-0026212) to K.M. and S.M.B. S.M.B. holds a Career Award from the "Fonds de Recherche
564 du Québec – Santé." And A.B. holds a scholarship from the "Fonds de Recherche du Québec –
565 Santé."

566 **Data availability statement**

567 The raw data presented in this article are not readily available because of the sensitivity of the
568 video materials. The datasets analysed for the current study are available from the
569 corresponding author upon reasonable request.

REFERENCES

Ahmed, S., Haigh, A.-M. F., de Jager, C. A., & Garrard, P. (2013). Connected speech as a marker of disease progression in autopsy-proven Alzheimer's disease. *Brain*, 136(12), 3727-3737. <https://doi.org/10.1093/brain/awt269>

Altman, D. G., & Bland, J. M. (1983). Measurement in Medicine : The Analysis of Method Comparison Studies. *Journal of the Royal Statistical Society. Series D (The Statistician)*, 32(3), 307-317. <https://doi.org/10.2307/2987937>

Armstrong, E. (2000). Aphasic discourse analysis : The story so far. *Aphasiology*, 14(9), 875-892.

Azios, J. H., Archer, B., Simmons-Mackie, N., Raymer, A., Carragher, M., Shashikanth, S., & Gulick, E. (2022). Conversation as an Outcome of Aphasia Treatment : A Systematic Scoping Review. *American Journal of Speech-Language Pathology*, 31(6), 2920-2942. https://doi.org/10.1044/2022_AJSLP-22-00011

Bartels, C., Wegrzyn, M., Wiedl, A., Ackermann, V., & Ehrenreich, H. (2010). Practice effects in healthy adults : A longitudinal study on frequent repetitive cognitive testing. *BMC Neuroscience*, 11(1), 118. <https://doi.org/10.1186/1471-2202-11-118>

Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method comparison studies. *Statistical Methods in Medical Research*, 8(2), 135-160. https://doi.org/10.1177/096228029900800204open_in_new

Boschi, V., Catricalà, E., Consonni, M., Chesi, C., Moro, A., & Cappa, S. F. (2017). Connected Speech in Neurodegenerative Language Disorders : A Review. *Frontiers in Psychology*, 8(269). <https://doi.org/10.3389/fpsyg.2017.00269>

Boucher, J., Brisebois, A., Slegers, A., Courson, M., Désilets-Barnabé, M., Chouinard, A.-M., Gbeglo, V., Marcotte, K., & Brambati, S. M. (2022). Picture Description of the Western Aphasia Battery Picnic Scene : Reference Data for the French Canadian Population. *American Journal of Speech-Language Pathology*, 31(1), 257-270. https://doi.org/10.1044/2021_AJSLP-20-00388

Boyle, M. (2014). Test-retest stability of word retrieval in aphasic discourse. *Journal of Speech, Language, and Hearing Research*, 57(3), 966-978. https://doi.org/10.1044/2014_JSLHR-L-13-0171

Boyle, M. (2015). Stability of Word-Retrieval Errors With the AphasiaBank Stimuli. *American journal of speech-language pathology*, 24(4), S953-S960. https://doi.org/10.1044/2015_AJSLP-14-0152

Brisebois, A., Brambati, S. M., Désilets-Barnabé, M., Boucher, J., García, A. O., Rochon, E., Leonard, C., Desautels, A., & Marcotte, K. (2020). The importance of thematic informativeness in narrative discourse recovery in acute post-stroke aphasia. *Aphasiology*, 34(4). <https://doi.org/10.1080/02687038.2019.1705661>

Brisebois, A., Brambati, S. M., Jutras, C., Rochon, E., Leonard, C., Zumbansen, A., Anglade, C., & Marcotte, K. (2023). Adaptation and Reliability of the Cinderella Story Retell Task in Canadian French neurotypical speakers. *American Journal of Speech-Language Pathology*.

Brisebois, A., Brambati, S. M., Rochon, E., Leonard, C., & Marcotte, K. (2023). The longitudinal trajectory of discourse from the hyperacute to the chronic phase in mild to moderate poststroke aphasia recovery : A case series study. *International Journal of Language & Communication Disorders*, 58(4), 1061-1081.

https://doi.org/10.1111/1460-6984.12844

Brookshire, R. H., & Nicholas, L. E. (1984). Comprehension of directly and indirectly stated main ideas and details in discourse by brain-damaged and non-brain-damaged listeners. *Brain and Language*, 21(1), 21-36.
[https://doi.org/10.1016/0093-934X\(84\)90033-6](https://doi.org/10.1016/0093-934X(84)90033-6)

Brookshire, R. H., & Nicholas, L. E. (1994). Speech Sample Size and Test-Retest Stability of Connected Speech Measures for Adults With Aphasia. *Journal of Speech, Language, and Hearing Research*, 37(2), 399-407.
<https://doi.org/10.1044/jshr.3702.399>

Bryant, L., Ferguson, A., & Spencer, E. (2016). Linguistic analysis of discourse in aphasia : A review of the literature. *Clinical Linguistics & Phonetics*, 30(7).
<https://doi.org/10.3109/02699206.2016.1145740>

Bryant, L., Spencer, E., & Ferguson, A. (2017). Clinical use of linguistic discourse analysis for the assessment of language in aphasia. *Aphasiology*, 31(10).
<https://doi.org/10.1080/02687038.2016.1239013>

Callahan, B. L., Macoir, J., Hudon, C., Bier, N., Chouinard, N., Cossette-Harvey, M., Daigle, N., Fradette, C., Gagnon, L., & Potvin, O. (2010). Normative data for the pyramids and palm trees test in the quebec-french population. *Archives of Clinical Neuropsychology*, 25(3), 212-217. <https://doi.org/10.1093/arclin/acq013>

Capilouto, G. J., Wright, H. H., & Maddy, K. M. (2016). Microlinguistic processes that contribute to the ability to relay main events : Influence of age. *Aging, Neuropsychology, and Cognition*, 23(4), 445-463.
<https://doi.org/10.1080/13825585.2015.1118006>

Cheney, H. J., & Murdoch, B. E. (1994). The production of narrative discourse in response to animations in persons with dementia of the Alzheimer's type : Preliminary findings. *Aphasiology*, 8(2), 159-171.
<https://doi.org/10.1080/02687039408248648>

Colin, C., & Le Meur, C. (2016). *Adaptation du projet AphasiaBank à la langue française—Contribution pour une évaluation informatisée du discours oral de patients aphasiques [French adaptation of the AphasiaBank project]* [Univeristé Paul Sabatier].
<https://aphasia.talkbank.org/access/French/0docs/ColinLeMeurmemoire.pdf>

Cooper, P. V. (1990). Discourse Production and Normal Aging : Performance on Oral Picture Description Tasks. *Journal of Gerontology*, 45(5), P210-P214.
<https://doi.org/10.1093/geronj/45.5.P210>

Criel, Y., Deleu, M., De Groote, E., Bockstaal, A., Kong, A. P.-H., & De Letter, M. (2021). The Dutch Main Concept Analysis : Translation and Establishment of Normative Data. *American Journal of Speech-Language Pathology*, 30, 1750-1766.
https://doi.org/10.1044/2021_AJSLP-20-00285

Croisile, B., Ska, B., Brabant, M.-J., Duchene, A., Lepage, Y., Aimard, G., & Trillet, M. (1996). Comparative Study of Oral and Written Picture Description in Patients with Alzheimer's Disease. *Brain and Language*, 53(1), 1-19.
<https://doi.org/10.1006/brln.1996.0033>

DeepL Traduction – DeepL Translate : Le meilleur traducteur au monde. (2022).
<https://www.DeepL.com/translator>

Delais-Roussarie, E., Post, B., & Yoo, H. (2020). Prosodic Units and Intonational

Grammar in French : Towards a new Approach. *Speech Prosody 2020*, 126-130. <https://doi.org/10.21437/SpeechProsody.2020-26>

Dietz, A., & Boyle, M. (2018). Discourse measurement in aphasia research : Have we reached the tipping point? *Aphasiology*, 32(4), 459-464. <https://doi.org/10.1080/02687038.2017.1398803>

Dijk, T. A. van. (2019). *Macrostructures : An Interdisciplinary Study of Global Structures in Discourse, Interaction, and Cognition* (1^{re} éd.). Routledge. <https://doi.org/10.4324/9780429025532>

Donoghue, D., Physiotherapy Research and Older People (PROP) group, & Stokes, E. K. (2009). How much change is true change? The minimum detectable change of the Berg Balance Scale in elderly people. *Journal of Rehabilitation Medicine*, 41(5), 343-346. <https://doi.org/10.2340/16501977-0337>

Doyle, P. J., Goda, A. J., & Spencer, K. A. (1995). The Communicative Informativeness and Efficiency of Connected Discourse by Adults With Aphasia Under Structured and Conversational Sampling Conditions. *American Journal of Speech-Language Pathology*, 4(4), 130-134. <https://doi.org/10.1044/1058-0360.0404.130>

Duong, A., Tardif, A., & Ska, B. (2003). Discourse about discourse : What is it and how does it progress in Alzheimer's disease? *Brain and Cognition*, 53(2), 177-180. [https://doi.org/10.1016/S0278-2626\(03\)00104-0](https://doi.org/10.1016/S0278-2626(03)00104-0)

Fergadiotis, G., Kapantzoglou, M., Kintz, S., & Wright, H. H. (2019). Modeling confrontation naming and discourse informativeness using structural equation modeling. *Aphasiology*, 33(5), 544-560. <https://doi.org/10.1080/02687038.2018.1482404>

Filiou, R.-P., Bier, N., Slegers, A., Houzé, B., Belchior, P., & Brambati, S. M. (2020). Connected speech assessment in the early detection of Alzheimer's disease and mild cognitive impairment : A scoping review. *Aphasiology*, 34(6), 723-755. <https://doi.org/10.1080/02687038.2019.1608502>

Fitzpatrick, R., Davey, C., Buxton, M. J., & Jones, D. R. (1998). Evaluating patient-based outcome measures for use in clinical trials : A review. *Health Technology Assessment*, 2(14). <https://doi.org/10.3310/hta2140>

Frederiksen, C. H., & Stemmer, B. (1993). Conceptual processing of discourse by a right hemisphere brain-damaged patient. In H. Brownell & Y. Joanette (Ed.), *Narrative discourse in neurologically impaired and normal aging adults* (p. 239-278). Singular Publishing Group.

Gallée, J., Cordella, C., Fedorenko, E., Hochberg, D., Tourotoglou, A., Quimby, M., & Dickerson, B. C. (2021). Breakdowns in Informativeness of Naturalistic Speech Production in Primary Progressive Aphasia. *Brain Sciences*, 11(2), 130. <https://doi.org/10.3390/brainsci11020130>

García, A. M., De Leon, J., Tee, B. L., Blasi, D. E., & Gorno-Tempini, M. L. (2023). Speech and language markers of neurodegeneration : A call for global equity. *Brain*, awad253. <https://doi.org/10.1093/brain/awad253>

Giles, E., Patterson, K., & Hodges, J. R. (1996). Performance on the Boston Cookie Theft picture description task in patients with early dementia of the Alzheimer's type : Missing information. *Aphasiology*, 10(4), 395-408. <https://doi.org/10.1080/02687039608248419>

Goodglass, H., Kaplan, E., & Baresi, B. (2001). *Boston Diagnostic Aphasia*

Examination—Third Edition (BDAE-3) (Lippincott Williams&Wilkins.).

Hillis, A. E. (2007). Aphasia : Progress in the last quarter of a century. *Neurology*. <https://doi.org/10.1212/01.wnl.0000265600.69385.6f>

Jensen, A. M., Chenery, H. J., & Copland, D. A. (2006). A comparison of picture description abilities in individuals with vascular subcortical lesions and Huntington's Disease. *Journal of Communication Disorders*, 39(1), 62-77. <https://doi.org/10.1016/j.jcomdis.2005.07.001>

Jessen, F., Amariglio, R. E., Boxtel, M., Breteler, M., Ceccaldi, M., Chételat, G., Dubois, B., Dufouil, C., Ellis, K. A., Flier, W. M., Glodzik, L., Harten, A. C., Leon, M. J., McHugh, P., Mielke, M. M., Molinuevo, J. L., Mosconi, L., Osorio, R. S., Perrotin, A., ... Subjective Cognitive Decline Initiative (SCD-I) Working Group. (2014). A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. *Alzheimer's & Dementia*, 10(6), 844-852. <https://doi.org/10.1016/j.jalz.2014.01.001>

Jessen, F., Amariglio, R. E., Buckley, R. F., Flier, W. M. van der, Han, Y., Molinuevo, J. L., Rabin, L., Rentz, D. M., Rodriguez-Gomez, O., Saykin, A. J., Sikkes, S. A. M., Smart, C. M., Wolfsgruber, S., & Wagner, M. (2020). The characterisation of subjective cognitive decline. *The Lancet Neurology*, 19(3), 271-278. [https://doi.org/10.1016/S1474-4422\(19\)30368-0](https://doi.org/10.1016/S1474-4422(19)30368-0)

Kertesz, A. (2006). *Western Aphasia Battery- Revised*. Pearson.

Kong, A. P.-H. (2009). The use of main concept analysis to measure discourse production in Cantonese-speaking persons with aphasia : A preliminary report. *Journal of Communication Disorders*, 42(6), 442-464. <https://doi.org/10.1016/j.jcomdis.2009.06.002>

Kong, A. P.-H. (2016). *Analysis of Neurogenic Disordered Discourse Production* (0 éd.). Routledge. <https://doi.org/10.4324/9781315639376>

Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. *Journal of chiropractic medicine*, 15(2), 155-163. <https://doi.org/10.1016/J.JCM.2016.02.012>

Le Dorze, G., & Bédard, C. (1998). Effects of age and education on the lexico-semantic content of connected speech in adults. *Journal of Communication Disorders*, 31(1), 53-71. [https://doi.org/10.1016/S0021-9924\(97\)00051-8](https://doi.org/10.1016/S0021-9924(97)00051-8)

Mackenzie, C. (2000). The relevance of education and age in the assessment of discourse comprehension. *Clinical Linguistics & Phonetics*, 14(2), 151-161. <https://doi.org/10.1080/026992000298887>

Mackenzie, C., Brady, M., Norrie, J., & Poedjianto, N. (2007). Picture description in neurologically normal adults : Concepts and topic coherence. *Aphasiology*, 21(3-4), 340-354. <https://doi.org/10.1080/02687030600911419>

MacWhinney, B. (2000). *The CHILDES Project : Tools for Analyzing Talk: Vol. 3rd Editio*. Lawrence Erlbaum Associates.

Marcotte, K., Lachance, A., Brisebois, A., Mazzocca, P., Désilets-Barnabé, M., Desjardins, N., & Brambati, S. M. (2022). Validation of Videoconference Administration of Picture Description From the Western Aphasia Battery-Revised in Neurotypical Canadian French Speakers. *American Journal of Speech-Language Pathology*, 31(6), 2825-2834. https://doi.org/10.1044/2022_AJSLP-22-00084

Marini, A., Andreetta, S., del Tin, S., & Carlomagno, S. (2011). A multi-level approach

to the analysis of narrative language in aphasia. *Aphasiology*, 25(11), 1372-1392. <https://doi.org/10.1080/02687038.2011.584690>

Marini, A., Boewe, A., Caltagirone, C., & Carlomagno, S. (2005). Age-related Differences in the Production of Textual Descriptions. *Journal of Psycholinguistic Research*, 34(5), 439-463. <https://doi.org/10.1007/s10936-005-6203-z>

Mehler, J. (1994). Cross-linguistic approaches to speech processing. *Current Opinion in Neurobiology*, 4(2), 171-176. [https://doi.org/10.1016/0959-4388\(94\)90068-X](https://doi.org/10.1016/0959-4388(94)90068-X)

Mitchell, A. J., Beaumont, H., Ferguson, D., Yadegarfar, M., & Stubbs, B. (2014). Risk of dementia and mild cognitive impairment in older people with subjective memory complaints : Meta-analysis. *Acta Psychiatrica Scandinavica*, 130(6), 439-451. <https://doi.org/10.1111/acps.12336>

Mueller, K. D., Hermann, B., Mecollari, J., & Turkstra, L. S. (2018). Connected speech and language in mild cognitive impairment and Alzheimer's disease : A review of picture description tasks. *Journal of clinical and experimental neuropsychology*, 40(9), 917-939. <https://doi.org/10.1080/13803395.2018.1446513>

Nicholas, L. E., & Brookshire, R. H. (1995). Presence, Completeness, and Accuracy of Main Concepts in the Connected Speech of Non-Brain-Damaged Adults and Adults With Aphasia. *Journal of Speech, Language, and Hearing Research*, 38(1). <https://doi.org/10.1044/jshr.3801.145>

Pistono, A., Pariente, J., Bézy, C., Lemesle, B., Le Men, J., & Jucla, M. (2019). What happens when nothing happens? An investigation of pauses as a compensatory mechanism in early Alzheimer's disease. *Neuropsychologia*, 124, 133-143. <https://doi.org/10.1016/j.neuropsychologia.2018.12.018>

Prins, R., & Bastiaanse, R. (2004). Analysing the spontaneous speech of aphasic speakers. In *Aphasiology*. <https://doi.org/10.1080/02687030444000534>

Pritchard, M., Hilari, K., Cocks, N., & Dipper, L. (2017). Reviewing the quality of discourse information measures in aphasia. *International Journal of Language & Communication Disorders*, 52(6). <https://doi.org/10.1111/1460-6984.12318>

Pritchard, M., Hilari, K., Cocks, N., & Dipper, L. (2018). Psychometric properties of discourse measures in aphasia : Acceptability, reliability, and validity. *International Journal of Language & Communication Disorders*, 53(6), 1078-1093. <https://doi.org/10.1111/1460-6984.12420>

Richardson, J. D., & Dalton, S. G. H. (2016). Main concepts for three different discourse tasks in a large non-clinical sample. *Aphasiology*, 30(1), 45-73. <https://doi.org/10.1080/02687038.2015.1057891>

Schiavetti, N. E., Metz, D. E., & Orlikoff, R. F. (2011). *Evaluation research in communication disorders* (6th edition). Pearson Education.

Sherratt, S. (2007). Multi-level discourse analysis : A feasible approach. *Aphasiology*, 21(3-4), 375-393. <https://doi.org/10.1080/02687030600911435>

Sherratt, S., & Bryan, K. (2019). Textual cohesion in oral narrative and procedural discourse : The effects of ageing and cognitive skills. *International Journal of Language & Communication Disorders*, 54(1), 95-109. <https://doi.org/10.1111/1460-6984.12434>

Ska, B., Duong, A., & Joannette, Y. (2004). Discourse impairments. In R. D. Kent (Ed.), *The MIT encyclopedia of communication disorders* (p. 302-304). The MIT press.

Slegers, A., Filiou, R.-P., Montembeault, M., & Brambati, S. M. (2018). Connected

Speech Features from Picture Description in Alzheimer's Disease : A Systematic Review. *Journal of Alzheimer's Disease*, 65(2), 519-542.
<https://doi.org/10.3233/JAD-170881>

Sloetjes, H., & Wittenburg, P. (2008). *Annotation by category-ELAN and ISO DCR*.

Slot, R. E. R., Sikkes, S. A. M., Berkhof, J., Brodaty, H., Buckley, R., Cavedo, E., Dardiotis, E., Guillo-Benarous, F., Hampel, H., Kochan, N. A., Lista, S., Luck, T., Maruff, P., Molinuevo, J. L., Kornhuber, J., Reisberg, B., Riedel-Heller, S. G., Risacher, S. L., Roehr, S., ... Flier, W. M. (2019). Subjective cognitive decline and rates of incident Alzheimer's disease and non-Alzheimer's disease dementia. *Alzheimer's & Dementia*, 15(3), 465-476. <https://doi.org/10.1016/j.jalz.2018.10.003>

Spencer, E., Bryant, L., & Colyvas, K. (2020). Minimizing Variability in Language Sampling Analysis : A Practical Way to Calculate Text Length and Time Variability and Measure Reliable Change When Assessing Clients. *Topics in Language Disorders*, 40(2), 166-181.
<https://doi.org/10.1097/TLD.0000000000000212>

Stark, B. C., Alexander, J. M., Hittson, A., Doub, A., Igleheart, M., Streander, T., & Jewell, E. (2023). Test-Retest Reliability of Microlinguistic Information Derived From Spoken Discourse in Persons With Chronic Aphasia. *Journal of Speech, Language, and Hearing Research*, 1-30. https://doi.org/10.1044/2023_JSLHR-22-00266

Stark, B. C., Bryant, L., Themistocleous, C., den Ouden, D. B., & Roberts, A. C. (2022). Best practice guidelines for reporting spoken discourse in aphasia and neurogenic communication disorders. *Aphasiology*, 1-24.
<https://doi.org/10.1080/02687038.2022.2039372>

Stark, B. C., Dutta, M., Murray, L. L., Bryant, L., Fromm, D., MacWhinney, B., Ramage, A. E., Roberts, A., Den Ouden, D. B., Brock, K., McKinney-Bock, K., Paek, E. J., Harmon, T. G., Yoon, S. O., Themistocleous, C., Yoo, H., Aveni, K., Gutierrez, S., & Sharma, S. (2021). Standardizing assessment of spoken discourse in aphasia : A working group with deliverables. *American Journal of Speech-Language Pathology*, 30(1s), 491-502. https://doi.org/10.1044/2020_AJSLP-19-00093

Stark, B. C., Dutta, M., Murray, L. L., Bryant, L., Fromm, D., MacWhinney, B., Ramage, A. E., Roberts, A., den Ouden, D. B., Brock, K., McKinney-Bock, K., Paek, E. J., Harmon, T. G., Yoon, S. O., Themistocleous, C., Yoo, H., Aveni, K., Gutierrez, S., & Sharma, S. (2021). Standardizing Assessment of Spoken Discourse in Aphasia : A Working Group With Deliverables. *American Journal of Speech-Language Pathology*, 30(1S). https://doi.org/10.1044/2020_AJSLP-19-00093

Stark, B. C., Dutta, M., Murray, L. L., Fromm, D., Bryant, L., Harmon, T. G., Ramage, A. E., & Roberts, A. C. (2021). Spoken Discourse Assessment and Analysis in Aphasia : An International Survey of Current Practices. *Journal of Speech, Language, and Hearing Research*, 64(11), 4366-4389.
https://doi.org/10.1044/2021_JSLHR-20-00708

Steinberg, A., Lyden, P. D., & Davis, A. P. (2022). Bias in Stroke Evaluation : Rethinking the Cookie Theft Picture. *Stroke*, 53(6), 2123-2125.
<https://doi.org/10.1161/STROKEAHA.121.038515>

Stockbridge, M. D., Kelly, L., Newman-Norlund, S., White, B., Bourgeois, M., Rothermel, E., Fridriksson, J., Lyden, P. D., & Hillis, A. E. (2024). New Picture

Stimuli for the NIH Stroke Scale : A Validation Study. *Stroke*, 55(2), 443-451.
<https://doi.org/10.1161/STROKEAHA.123.044384>

Taler, V., & Phillips, N. A. (2008). Language performance in Alzheimer's disease and mild cognitive impairment : A comparative review. *Journal of Clinical and Experimental Neuropsychology*, 30(5), 501-556.
<https://doi.org/10.1080/13803390701550128>

Tompkins, C. A. (1995). *Right hemisphere communication disorders : Theory and management* / (Singular publishing group).

Verfaillie, S. C. J., Witteman, J., Slot, R. E. R., Pruis, I. J., Vermaat, L. E. W., Prins, N. D., Schiller, N. O., Van De Wiel, M., Scheltens, P., Van Berckel, B. N. M., Van Der Flier, W. M., & Sikkes, S. A. M. (2019). High amyloid burden is associated with fewer specific words during spontaneous speech in individuals with subjective cognitive decline. *Neuropsychologia*, 131, 184-192.
<https://doi.org/10.1016/j.neuropsychologia.2019.05.006>

Yazu, H., Kong, A. P.-H., Yoshihata, H., & Okubo, K. (2022). Adaptation and validation of the main concept analysis of spoken discourse by native Japanese adults. *Clinical Linguistics & Phonetics*, 36(1), 17-33.
<https://doi.org/10.1080/02699206.2021.1915385>

Yorkston, K. M., & Beukelman, D. R. (1980). An Analysis of Connected Speech Samples of Aphasic and Normal Speakers. *Journal of Speech and Hearing Disorders*, 45(1). <https://doi.org/10.1044/jshd.4501.27>

Table 1. Participants' characteristics.

Variable	
Age	
Mean (SD)	64.53 (7.15)
Median [Min - Max]	64 [52 - 82]
Gender	
Female	37 (56.06%)
Male	29 (43.94%)
Handedness	
Right	60 (93.94%)
Left	4 (6.06%)
Education	
Mean (SD)	16.11 (2.86)
Median [Min - Max]	16 [11 -25]
Time between sessions (days)	
Mean (SD)	253.36 (67.45)
Median [Min - Max]	252 [162 - 406]
Linguistic profile	
Monolingual (French only)	25 (37.88%)
Bilingual (French and English)	35 (53.03%)
Multilingual (French, English and other language(s))	6 (9.09%)

n = 66; SD = Standard Deviation; Min = Minimum; Max = Maximum

Table 2. Definition of the discourse variables.

Measure	Definition	Language dimension
Macrostructural variables		
ICU _{total}	Total number of ICUs produced	General informativeness
ICUs per minute (ICUs/min)	Total number of ICUs divided by the duration (converted from seconds to minute)	General informativeness
ICUs per utterance	Total number of CIUs divided by the number of utterances	General informativeness
ICU _{subjects}	Total number of ICUs from the subject category produced	General informativeness
ICU _{places}	Total number of ICUs from the places category produced	General informativeness
ICU _{entities}	Total number of ICUs from the entities category produced	General informativeness
ICU _{actions}	Total number of ICUs from the action category produced	General informativeness
TU _{total}	Total number of TUs produced	Thematic informativeness
TUs per minute (TUs/min)	Total number of TUs divided by the duration (converted from seconds to minute)	Thematic informativeness
TUs per utterance (TUs/utterance)	Total number of TUs divided by the number of utterances	Thematic informativeness

Measure	Definition	Language dimension
Microstructural variables		
Duration	Duration of the sample in seconds	Corpus size
Tokens	Total number of words produced	Corpus size
Mean length of utterance (MLU)	Average number of words per utterance	Productivity
Propositional density	Number of verbs, adjectives, adverbs, prepositions and conjunctions divided by the total number of words	Content richness
Words per minute (WPM)	Total number of tokens divided by the duration (converted from seconds to minute)	Fluency
Verbs per utterance	Average number of verbs (verbs, copulas, auxiliaries followed by past or present participles) per utterance.	Syntactic complexity
Open/closed class ratio	Ratio of open class words (all nouns, verbs, copulas, adjectives and adverbs) divided by closed class words (all other words)	Syntactic complexity
Noun/verb ratio	Ratio of nouns to verbs, excluding auxiliaries and modals	Syntactic complexity
Moving Average Token-Type Ratio (MATTR)	Average of estimated Token-Type Ratios for successive nonoverlapping successive windows of fixed length	Lexical diversity
% Correct information units (CIUs)	Total number of words relevant to the stimulus and informative (CIUs) divided by the total number of words	Lexical informativeness
CIUs per minute (CIUs/min)	Total number of CIUs divided by the duration (converted from seconds to minute)	Lexical informativeness

Note. Data derived from the CLAN software (MacWhinney et al., 2010).

Table 3. Frequency for each Information Content Unit.

Subjects	#ICU	Description of the ICU	Other acceptable answers	Frequency			
				Test		Retest	
				n	%	n	%
Subj1		Homme (qui lit [Action5]) (<i>man (reading)</i>)	Monsieur/père/papa/mari/copain/gars/compagnon/ Garçon/Personne qui [Action5] (<i>mister/dad/daddy/husband/boyfriend/guy/companio n/boy/person who [Action 5]</i>)	63	95	61	92
Subj2		Homme (qui pêche [Action4]) (<i>man (fishing)</i>)	Grand-père/gars/garçon/Personne qui [Action4] ou Personne sur [Place4] (<i>grandfather/guy/boy/person who [Action4]) or person on [Place4]</i>)	61	92	63	95
Subj3		Femme (<i>woman/girl</i>)	Madame/mère/maman/dame/fille/Personne qui [Action6] (<i>mrs/mother/mom/lady/girl/person who [Action6]</i>)	62	94	56	85
Subj4		Garçon (<i>boy</i>)	Enfant/frère/jeune/gars (<i>kid/brother/young/child</i>)	63	95	66	100
Subj5		Fille/enfant (<i>girl/kid</i>)	Fillette/jeune/soeur (<i>little girl/child/sister</i>)	63	95	65	98
Subj6		Couple (qui pique-nique [Action1]) (<i>couple (having a picnic)</i>)	Parents qui [Action1] (<i>parents (having a picnic)</i>)	28	42	33	50
Subj7		Gens/personnes sur le bateau (<i>people/persons on the boat</i>)	Quelqu'un sur [Ent6]/plaisanciers (<i>someone on the [Ent6]/boaters</i>)	39	59	39	59

	Subj8	Chien (dog)		65	98	65	98
Places	Place1	Devant le garage (<i>in front of the garage</i>)	Devant la maison/dans l'entrée/dans l'allée (<i>in front of the house/in the driveway/in the driveway</i>)	32	48	21	32
	Place2	Sur le bord de l'eau (<i>on the water's edge</i>)	Lac/rivière/cours d'eau/mer (<i>lake/river/watercourse/sea</i>)	53	80	59	89
	Place3*	Sur la plage/dans le sable (<i>on the beach/in the sand</i>)	Sur la terre, rive, rivage, berge, grève (<i>on the shore</i>)	43	65	46	70
	Place4	Sur le quai (<i>on the dock/on the jetty</i>)	Sur la jetée	41	62	46	70
Entities	Ent1	Cerf-volant (<i>kite</i>)		65	98	66	100
	Ent2	Seau/chaudière (<i>bucket</i>)		31	47	26	39
	Ent3	Livre/volume (<i>book</i>)		20	30	36	39
	Ent4	Breuvage (<i>drink</i>)	Boisson/bouteille/quelque chose à boire/verre/vin/ bière/liceur/de l'eau/ <i>drink/alcool/liquid</i> (<i>beverage/bottle/something to drink/drink/wine/ beer/soft drink/water/drink/liquid</i>)	58	88	56	85
	Ent5	Voiture/automobile (<i>car</i>)		55	83	47	71
	Ent6	Bateau/voilier (<i>boat/sailing ship</i>)		65	98	62	94
	Ent7	Pelle (<i>spade</i>)		33	50	28	42
	Ent8	Drapeau (<i>flag</i>)		40	61	32	48

Actions	Ent9	Radio (radio)	Appareil qui [Action10] (device that [Action10])	52	79	52	79
	Ent10	Panier de pique-nique (picnic basket)	Sac/boîte de pique-nique (picnic bag/box)	25	38	24	36
	Ent11	Sandales (sandals)	Souliers/chaussures (shoes/footwear)	33	50	30	45
	Ent12	Arbre (tree)		44	67	39	59
	Ent13	Maison (house)	Chalet/propriété/demeure (Cottage/property/home)	65	98	65	98
	Action1	Le couple [Subj6] pique-nique (Couple having a picnic)		53	80	58	88
	Action2	Personnes [Subj7] font de la voile (people sailing)	[Ent6] vogue, se promène, passe, file [Sub7] font une balade en [Ent6] naviguent/se promènent/voguent en bateau	19	29	19	29
	Action3	Le garçon [Subj4] fait voler le cerf-volant [Ent1] (boy flying a kite)	[Sub4] tient/joue/court/s'amuse/traîne/lance/tire/ promène son [Ent1] ([Sub4] holds/plays/runs/has fun/drags/throws/pulls/ walks his [Ent1])	58	88	54	82
	Action4	L'homme [Subj2] pêche (man fishing)	[Subj2] attrape (un poisson/une prise) ([Subj2] catches (a fish))	58	88	54	82
	Action5	L'homme [Subj1] lit (un livre) (man reading)	[Subj1] fait la lecture ([Subj1] reads to)	56	85	59	89
	Action6	[Subj3] verse (une boisson/à boire) [Subj3] prend (un verre) (girl pours/has a drink)	[Subj3] sert/vide (une boisson/à boire) ([Subj3] serves/empties (a drink/to drink))	55	83	53	80

	Action7	La voiture [Ent5] est stationnée/garée devant le garage [Place1] <i>(car parked in front of the garage)</i>	[Ent5] est garée [Place1] <i>([Ent5] is parked [Place1])</i>	29	44	23	35
	Action8	[Subj5] joue dans le sable [Place3] <i>(child playing on the beach)</i>	[Sub5] construit, bâtit, fabrique, fait (un château de sable) <i>([Sub5] builds, builds, makes, make (a sandcastle))</i>	65	98	66	100
	Action9	Drapeau [Ent8] vole <i>(flag flies)</i>	[Ent8] flotte/bouge <i>([Ent8] flutters/moves)</i>	16	24	11	17
	Action10	La radio [Ent9] joue (de la musique) <i>(radio playing)</i>	[Ent9] fonctionne, est allumée <i>([Ent9] is on)</i> [SubjX] écoute de la musique <i>([SubjX] listens to music)</i> Il y a de la musique, on entend de la musique <i>(There is music, we hear music)</i>	32	48	31	47
	Action11	Le chien [Subj8] court Le chien [Subj8] poursuit (le garçon) [Subj4] <i>(dog is running/is chasing)</i>	[Sub8] gambade/suit [Sub4] <i>([Sub8] roams/follows [Sub4])</i> [Sub4] est suivi par le [Sub8] <i>([Sub4] is followed by [Sub8])</i>	47	71	54	82

ICU = information content unit; n = number of persons who said the ICU; % = percentage of persons who said the ICU

* Combination of 'on the beach' and 'in the sand' from the list used by Jensen et al. (2006)'s as they were used interchangeably in French

Table 4. Descriptive statistics of macrostructural and microstructural variables of discourse and statistics comparing group difference between two sessions (T1 and T2).

Test (n = 66)		Retest (n = 66)		Statistics		Interpretation	
Mean (SD)	Median [min – max]	Mean (SD)	Median [min – max]	V (p value)	Spearman' rho (p value)		
Macrostructural variables							
ICU _{total}	25.56 (4.61) [14 – 33]	26 [14 – 33]	25.076 (4.916)	25 [14 – 33]	768 (p =.38)	0.49 (p <.001)	No systematic difference, moderate relationship between sessions.
ICUs per minute	21.62 (8.73) [8.31 – 48.89]	20.67 [8.31 – 48.89]	20.310 (7.454)	18.61 [6.33 – 41.67]	847 (p =.10)	0.65 (p <.001)	No systematic difference, moderate relationship between sessions.
ICUs/utterance	1.36 (0.49) [0.43 – 3.14]	1.34 [0.43 – 3.14]	1.292 (0.465)	[0.31 – 2.57]	940 (p =.39)	0.53 (p <.001)	No systematic difference, moderate relationship between sessions.
ICU _{subjects}	6.73 (1.20) [1 – 8]	7 [1 – 8]	6.788 (0.953)	7 [5 – 8]	481 (p =.92)	0.30 (p =.013)	No systematic difference, weak relationship between sessions.
ICU _{places}	2.56 (1.05) [0 – 4]	3 [0 – 4]	2.606 (1.006)	3 [0 – 4]	418 (p =.68)	0.39 (p <.001)	No systematic difference, weak relationship between sessions.
ICU _{entities}	8.88 (2.61) [3 – 13]	9 [3 – 13]	8.379 (3.012)	8 [2 – 13]	689 (p =.20)	0.52 (p <.001)	No systematic difference, moderate relationship between sessions.
ICU _{actions}	7.39 (1.51) [4 – 11]	8 [4 – 11]	7.303 (1.598)	7 [3 – 10]	707.50 (p =.76)	0.23 (p =.061)	No systematic difference, weak relationship between sessions.
TU _{total}	15.17 (1.296) [11 – 16]	16 [11 – 16]	15.02 (1.271)	15 [11 – 16]	289 (p =.02†)	0.36 (p =.003)	No systematic difference after correction for multiple comparisons, weak relationship between sessions.
TUs per minute	13.29 (6.24) [4.75 – 35.56]	12.08 [4.75 – 35.56]	12.619 (5.262)	11.84 [3.07 – 27.10]	966 (p =.37)	0.58 (p <.001)	No systematic difference, moderate relationship between sessions.
TUs per utterance	0.83 (0.31) [0.25 – 1.88]	0.81 [0.25 – 1.88]	0.803 (0.333)	0.74 [0.15 – 1.71]	1001 (p =.64)	0.49 (p <.001)	No systematic difference, moderate relationship between sessions.
Microstructural variables							

Duration (seconds)	84.12 (40.88)	77 [26 – 202]	85.94 (44.83)	77 [31 – 313]	1115 (p = .78)	0.62 (p < .001)	No systematic difference, moderate relationship between sessions.
Tokens	230.97 (115.43)	208.50 [74 – 661]	239.73 (128.58)	217.50 [86 – 820]	1164 (p = .71)	0.64 (p < .001)	No systematic difference, moderate relationship between sessions.
MLU (words)	10.21 (2.20)	9.91 [6.36 – 15.20]	10.16 (2.07)	9.73 [6.55 – 15.14]	1096 (p = .95)	0.40 (p < .001)	No systematic difference, moderate relationship between sessions.
Propositionnal density	0.36 (0.05)	0.36 [0.25 – 0.50]	0.37 (0.05)	0.37 [0.29 – 0.47]	1307 (p = .47)	0.41 (p = .001)	No systematic difference, moderate relationship between sessions.
Words per minute	167.39 (29.66)	164.33 [107.30 – 251.10]	168.54 (25.76)	168.03 [107.08 – 236.32]	1140 (p = .83)	0.58 (p < .001)	No systematic difference, moderate relationship between sessions.
Verbs per utterance	0.53 (0.23)	0.49 [0.10 – 1.30]	0.50 (0.197)	0.48 [0.07 – 1.09]	994 (p = .48)	0.38 (p = .002)	No systematic difference, weak relationship between sessions.
Open/closed ratio	1.03 (0.12)	1.02 [0.82 – 1.37]	1.06 (0.14)	1.05 [0.81 – 1.56]	1441 (p = .03†)	0.43 (p < .001)	No systematic difference after correction for multiple comparisons, moderate relationship between sessions.
Noun-to-verb ratio	6.36 (3.75)	6.06 [1.77 – 30.00]	6.94 (5.798)	5.64 [2.48 – 37.00]	1006 (p = .52)	0.45 (p < .001)	No systematic difference, moderate relationship between sessions.
MATTR	0.95 (0.01)	0.95 [0.91 – 0.98]	0.95 (0.02)	0.96 [0.89 – 0.99]	1158 (p = .58)	0.42 (p = .050)	No systematic difference, moderate relationship between sessions.
CIU _{total}	223.27 (109.62)	194.50 [77 – 637]	235.64 (124.83)	213.50 [85 – 802]	1182 (p = .47)	0.62 (p < .001)	No systematic difference, moderate relationship between sessions.
Percentage of CIUs	95.39 (3.67)	96.68 [85.15 – 100]	94.62 (3.58)	95.23 [82.49-100]	913 (p = .22)	0.31 (p = .012)	No systematic difference, weak relationship between sessions.
CIUs per minute	164.26 (37.63)	158.62 [70.84 – 319.41]	166.34 (26.71)	164.34 [112.31 – 233.85]	1186 (p = .61)	0.63 (p < .001)	No systematic difference, moderate relationship between sessions.

† Non-significant when correcting for multiple comparisons using the Bonferroni correction.

SD = standard deviation; min = minimum; max = maximum; ICU = information content unit; TU = thematic unit; MLU = mean length of utterance; MATTR = moving-average type-token ratio; CIU = correct information unit.

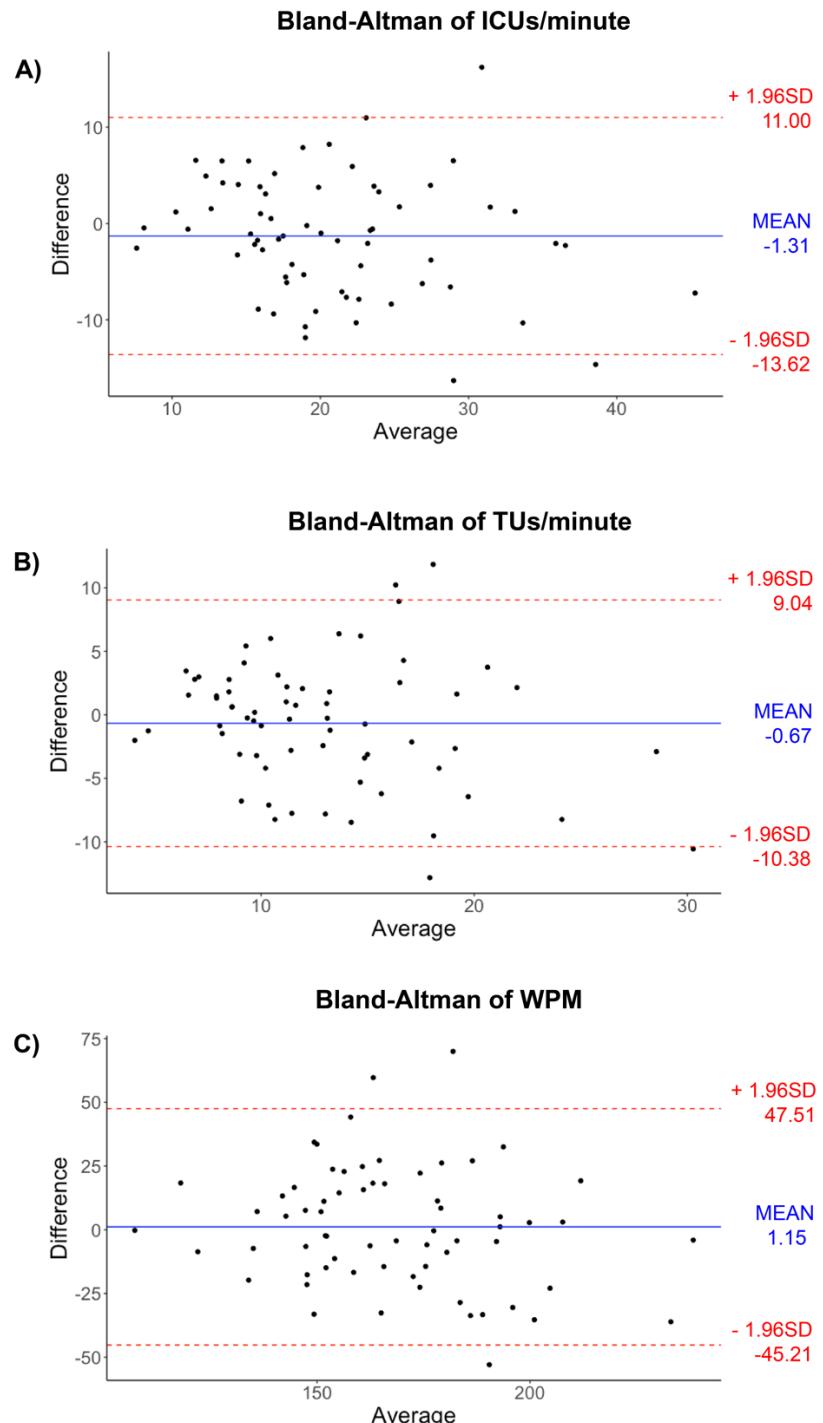
Table 5. Summary of test-retest results.

Koo and Li (2016) gives the following suggestion for interpreting intraclass correlation coefficient (ICC). including confidence intervals: below 0.50 = poor; between 0.50 and 0.75 = moderate; between 0.75 and 0.90 = good; and above 0.90 = excellent.

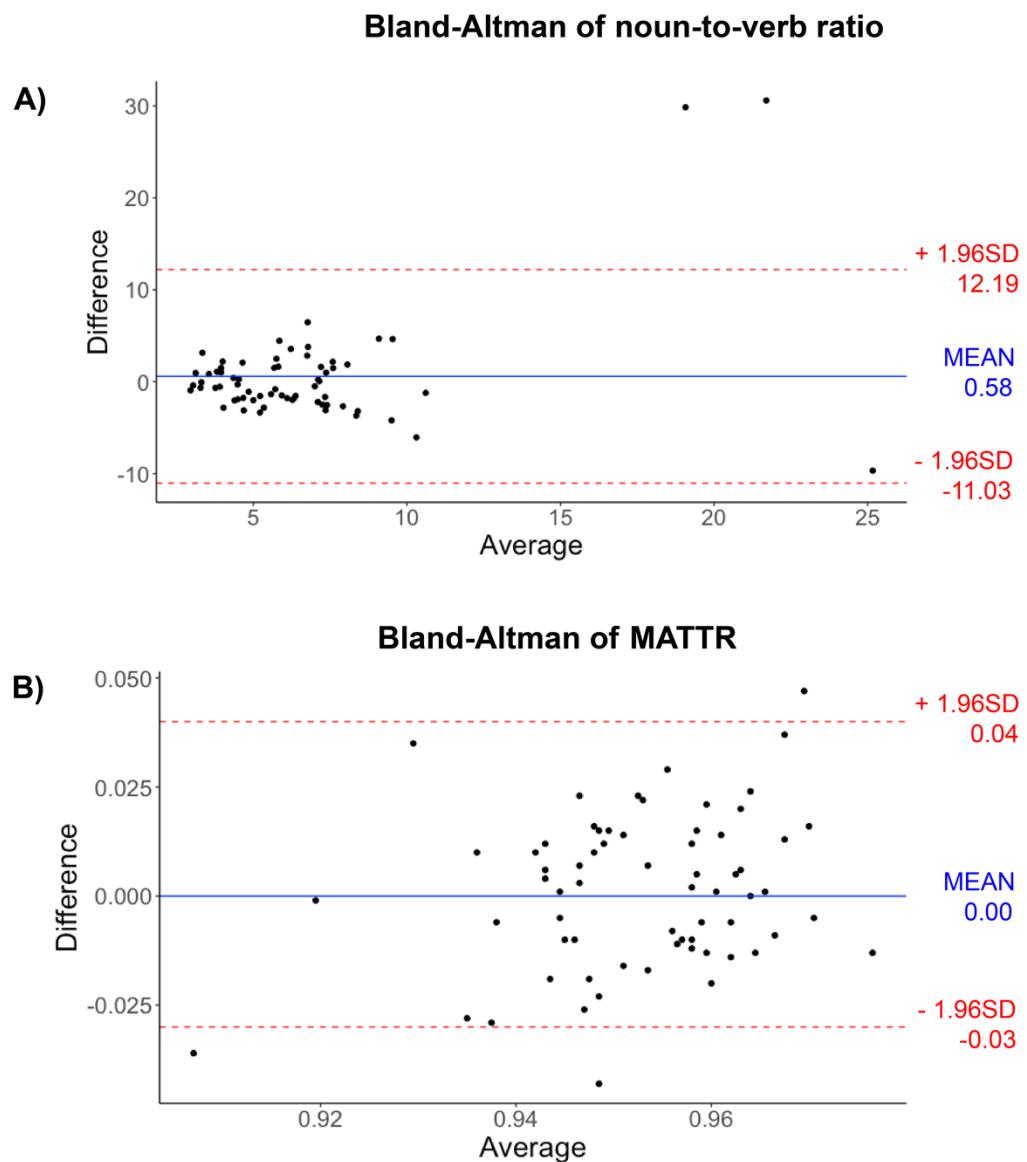
Measure	ICC			Correlation		Absolute Value Difference Between Test and Retest		MDC90
	ICC	95% CI Low – High	Koo & Li (2016) ICC Quality [CI Quality]	Spearman's rho	p value	M (SD)	Range	
Macrostructural variables								
ICU _{total}	0.535	0.338 – 0.687	Moderate [Poor-Moderate]	0.49	< 0.001	3.70 (2.74)	0.00 – 13.00	5.25
ICUs per minute	0.695	0.546 – 0.801	Moderate [Moderate-Good]	0.65	< 0.001	5.07 (3.88)	0.22 – 16.31	8.97
ICUs per utterance	0.544	0.351 – 0.693	Moderate [Poor-Moderate]	0.53	< 0.001	5.07 (3.88)	0.22 – 16.31	0.53
ICU _{subjects}	0.347	0.115 – 0.543	Poor [Poor-Moderate]	0.30	0.013	0.91 (0.84)	0 – 4	1.19
ICU _{places}	0.446	0.229 – 0.621	Poor [Poor-Moderate]	0.39	0.001	0.77 (0.76)	0 – 3	1.14
ICU _{entities}	0.504	0.303 – 0.663	Moderate [Poor-Moderate]	0.52	< 0.001	2.20 (1.77)	0 – 8	3.12
ICU _{actions}	0.316	0.080 – 0.518	Poor [Poor-Moderate]	0.23	0.061	1.39 (1.61)	0 – 5	1.71
TU _{total}	0.373	0.146 – 0.563	Poor [Poor-Moderate]	0.36	0.003	0.93 (1.09)	0 – 5	1.42
TUs per minute	0.631	0.461 – 0.756	Moderate [Poor-Good]	0.58	< 0.001	3.85 (3.15)	0.20 – 12.82	6.37
TUs per utterance	0.488	0.280 – 0.652	Poor [Poor-Moderate]	0.49	< 0.001	(0.21)	0.00 – 1.00	0.35
Microstructural variables								
Duration (seconds)	0.601	0.421 – 0.736	Moderate [Poor-Moderate]	0.62	< 0.001	27.79 (26.44)	0 – 124	47.32

Measure	ICC			Correlation		Absolute Value Difference Between Test and Retest		MDC90
	ICC	95% CI Low – High	Koo & Li (2016) ICC Quality [CI Quality]	Spearman' rho	p value	M (SD)	Range	
Tokens	0.580	0.395 – 0.720	Moderate [Poor-Moderate]	0.64	< 0.001	78.09 (80.48)	0.06 – 1.88	134.81
MLU (words)	0.393	0.166 – 0.579	Poor [Poor-Moderate]	0.40	< 0.001	1.88 (1.41)	0.06 – 6.48	2.36
Propositionnal density	0.452	0.237 – 0.625	Poor [Poor-Moderate]	0.41	0.001	0.04 (0.03)	0.00 – 0.14	0.05
Words per minute	0.641	0.473 – 0.764	Moderate [Poor-Good]	0.58	< 0.001	18.62 (14.43)	0.23 – 69.98	30.64
Verbs per utterance	0.408	0.187 – 0.590	Poor [Poor-Moderate]	0.38	0.002	0.19 (0.14)	0.01 – 0.75	0.24
Open/closed ratio	0.393	0.174 – 0.577	Poor [Poor-Moderate]	0.43	< 0.001	0.12 (0.09)	0.00 – 0.45	0.15
Noun-to-verb ratio	0.265	0.025 – 0.475	Poor [Poor]	0.45	< 0.001	0.19 (0.14)	0.01 – 0.75	5.40
MATTR	0.244	0.004 – 0.458	Poor [Poor-Moderate]	0.42	0.050	0.01 (0.01)	0.00 – 0.05	0.02
CIU _{total}	0.575	0.389 – 0.716	Moderate [Poor-Moderate]	0.62	< 0.001	76.48 (77.24)	0 – 371	129.70
Percentage of CIUs	0.420	0.204 – 0.599	Poor [Poor-Moderate]	0.31	0.012	3.03 (3.52)	0.02 – 9.40	4.02
CIUs per minute	0.543	0.348 – 0.694	Moderate [Poor-Moderate]	0.63	< 0.001	22.13 (22.00)	0.13 – 128.16	35.99

n = 66


* not significant using the adjusted p-value following the Bonferroni correction (p < .005)

SD = Standard Deviation; CI = Confidence Interval; MC_{total} = Main Concept total score; AC = Accurate and Complete; AI = Accurate and Incomplete; IC = Incorrect and Complete; II = Incorrect and Incomplete; AB = Absent; MLU = Mean Length of Utterances; CIU = Correct Information Units; MATTR = Moving-Average Type-Token Ratio; MDC90= Minimal Detectable Change at 90% confidence.


Figure 1. Bland-Altman plots for the variables with the highest strengths of relationships.

The upper plot (a) represents the limits of agreement for ICUs/minute, the middle plot (b) represents TUs/minute and the lower plot (c) represents WPM.

Legend: ICU = information content unit; TU = thematic unit; WPM = words per minute;
SD = standard deviation

Figure 2. Bland-Altman plots for variables with the lowest strengths of relationships. The upper plot (a) represents the limits of agreement for noun-to-verb ratio and the lower plot (b) represents MATTR.

Legend: MATTR = moving average type/token ratio; SD = standard deviation